
Programming in Lygon: A Brief Overview1

James Harland David Pym Michael Winikoff
RMIT Queen Mary&Westfield College UniversityofMelbourne

Australia University of London, UK Australia

Recently, there has been much interest in the application of linear logic, a logic of resource-
consumption, to computer science. In particular, the present authors (and others) have con-
sidered how logic programming languages can be derived by purely proof-theoretic anal-
yses of linear logic. Such languages provide a notion of resource-oriented programming,
often leading to programs that are more elegant and concise than their equivalents in lan-
guages, such as Prolog, based on classical logics. We give a brief overview of the linear
logic programming language Lygon.2

In common with other linear logic programming languages, Lygon allows clauses to
be used exactly once in a computation, thereby avoiding the need for the explicit resource-
counting often necessary in Prolog-like languages. However, just as linear logic is a strict
extension of classical logic, Lygon is a strict extension of (pure) Prolog: all (pure) Prolog
programs can be executed by the Lygon system. Hence all the features of classical pure
logic programs are available in Lygon, together with new ones based on linear logic. These
include global variables, a theoretically transparent notion of state, mutual exclusion oper-
ators and various constructs for manipulating clauses. All of these follow from the basis of
Lygon in linear logic and do not require extra-logical features for their definition.

One example of an elegant use of Lygon is in the problem of finding paths in cyclic
graphs. The well-known transitive closure program, a simple and elegant Prolog program,
will find an infinite number of paths. However, by treating the specification of each edge as
a linear predicate, a transliteration of this program into Lygon can be used. By stipulating
that each edge can be used (at most) once, just a finite number of paths will be found between
any two points in the graph. Moreover, experience with this and other examples suggests
that many of the programming constructs, such as the multiplicative (or parallel) disjunction
O of goals, arising from the basis of Lygon in linear logic facilitate a programming style that
is elegant and natural for a variety of applications.

The most important characteristic of the implementation of Lygon is the lazy splitting
of multiplicative branches of potential proofs.3 This proof-search strategy is supported by a
deterministic resource-management technique which can be exploited in many well-known
state-and-action problems, such as the Yale shooting problem, the blocks world, counting
programs and bin-packing problems.

The implementation of Lygon that is currently available (Version 0.4) is an interpreter
written in BinProlog.4

1Published in John Lloyd, editor, International Logic Programming Symposium, page 636, Portland, Oregon,
December 1995. MIT Press.

2For the theoretical basis of Lygon, see: D.J. Pym and J.A. Harland, A Uniform Proof-theoretic Investigation
of Linear Logic Programming, J. Logic Computat. 4:2:175–207, 1994.

3M. Winikoff and J. Harland, Implementing the Linear Logic Programming Language Lygon, Proc. ILPS’95,
Portland, Oregon, December, 1995. (This volume.)

4Implementation available via http://www.cs.mu.oz.au/�winikoff/lygon/lygon.html
or from the authors. Harland: jah@cs.rmit.edu.au, http://www.cs.rmit.edu.au/�jah.
Pym: pym@dcs.qmw.ac.uk, http://www.dcs.qmw.ac.uk/�pym. Winikoff:
winikoff@cs.mu.oz.au, http://www.cs.mu.oz.au/�winikoff.


